635 research outputs found

    Individual differences in explicit and implicit visuomotor learning and working memory capacity

    Get PDF
    The theoretical basis for the association between high working memory capacity (WMC) and enhanced visuomotor adaptation is unknown. Visuomotor adaptation involves interplay between explicit and implicit systems. We examined whether the positive association between adaptation and WMC is specific to the explicit component of adaptation. Experiment 1 replicated the positive correlation between WMC and adaptation, but revealed this was specific to the explicit component of adaptation, and apparently driven by a sub-group of participants who did not show any explicit adaptation in the correct direction. A negative correlation was observed between WMC and implicit learning. Experiments 2 and 3 showed that when the task restricted the development of an explicit strategy, high WMC was no longer associated with enhanced adaptation. This work reveals that the benefit of high WMC is specifically linked to an individual’s capacity to use an explicit strategy. It also reveals an important contribution of individual differences in determining how adaptation is performed

    A survey of cognitive assistants

    Get PDF
    Cognitive Assistants is a subset area of Personal Assistants focused on ubiquitous and pervasive platforms and services. They are aimed at elderly people’s needs, habits, and emotions by being dynamic, adaptive, sensitive, and responsive. These advances make cognitive assistants a true candidate of being used in real scenarios and help elderly people at home and outside environments. This survey will discuss the cognitive assistants’ emergence in order to provide a list of new projects being developed on this area. We summarize and enumerate the state-of-the-art projects. Moreover, we discuss how technology support the elderly affected by physical or mental disabilities or chronic diseases.Programa Operacional Temático Factores de Competitividade (UID/CEC/00319/2013

    How large should whales be?

    Full text link
    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table

    Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study

    Get PDF
    Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178

    Protein Hydrolysates Are Avoided by Herbivores but Not by Omnivores in Two-Choice Preference Tests

    Get PDF
    Background: The negative sensory properties of casein hydrolysates (HC) often limit their usage in products intended for human consumption, despite HC being nutritious and having many functional benefits. Recent, but taxonomically limited, evidence suggests that other animals also avoid consuming HC when alternatives exist. Methodology/Principal Findings: We evaluated ingestive responses of five herbivorous species (guinea pig, mountain beaver, gopher, vole, and rabbit) and five omnivorous species (rat, coyote, house mouse, white-footed mouse, and deer mouse; N = 16–18/species) using solid foods containing 20% HC in a series of two-choice preference tests that used a nonprotein, cellulose-based alternative. Individuals were also tested with collagen hydrolysate (gelatin; GE) to determine whether it would induce similar ingestive responses to those induced by HC. Despite HC and GE having very different nutritional and sensory qualities, both hydrolysates produced similar preference score patterns. We found that the herbivores generally avoided the hydrolysates while the omnivores consumed them at similar levels to the cellulose diet or, more rarely, preferred them (HC by the white-footed mouse; GE by the rat). Follow-up preference tests pairing HC and the nutritionally equivalent intact casein (C) were performed on the three mouse species and the guinea pigs. For the mice, mean HC preference scores were lower in the HC v C compared to the HC v Cel tests, indicating that HC’s sensory qualities negatively affected its consumption. However, responses were species-specific. For the guinea pigs, repeated exposure to HC or C (4.7-h sessions; N = 10) were found to increase subsequent HC preference scores in an HC v C preference test, which was interpreted in the light of conservative foraging strategies thought to typify herbivores. Conclusions/Significance: This is the first empirical study of dietary niche-related taxonomic differences in ingestive responses to protein hydrolysates using multiple species under comparable conditions. Our results provide a basis for future work in sensory, physiological, and behavioral mechanisms of hydrolysate avoidance and on the potential use of hydrolysates for pest management

    Variation of Basal EROD Activities in Ten Passerine Bird Species – Relationships with Diet and Migration Status

    Get PDF
    Inter-specific differences in animal defence mechanisms against toxic substances are currently poorly understood. The ethoxyresorufin-O-deethylase (EROD) enzyme plays an important role in defence against toxic chemicals in a wide variety of animals, and it is an important biomarker for environmental contamination. We compared basal hepatic EROD activity levels among ten passerine species to see if there is inter-specific variation in enzyme activity, especially in relation to their diet and migration status. Migratory insectivores showed higher EROD activity compared to granivores. We hypothesize that the variable invertebrate diet of migratory insectivores contains a wider range of natural toxins than the narrower diet of granivores. This may have affected the evolution of mixed function oxidases (MFO) system and enzyme activities. We further tested whether metabolic rates or relative liver size were associated with the variation in detoxification capacity. We found no association between EROD activity and relative (per mass unit) basal metabolic rate (BMR). Instead, EROD activity and relative liver mass (% of body mass) correlated positively, suggesting that a proportionally large liver also functions efficiently. Our results suggest that granivores and non-migratory birds may be more vulnerable to environmental contaminants than insectivores and migratory birds. The diet and migration status, however, are phylogenetically strongly connected to each other, and their roles cannot be fully separated in our analysis with only ten passerine species

    Cognition, behaviour and academic skills after cognitive rehabilitation in Ugandan children surviving severe malaria: a randomised trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection with severe malaria in African children is associated with not only a high mortality but also a high risk of cognitive deficits. There is evidence that interventions done a few years after the illness are effective but nothing is known about those done immediately after the illness. We designed a study in which children who had suffered from severe malaria three months earlier were enrolled into a cognitive intervention program and assessed for the immediate benefit in cognitive, academic and behavioral outcomes.</p> <p>Methods</p> <p>This parallel group randomised study was carried out in Kampala City, Uganda between February 2008 and October 2010. Sixty-one Ugandan children aged 5 to 12 years with severe malaria were assessed for cognition (using the Kaufman Assessment Battery for Children, second edition and the Test of Variables of Attention), academic skills (Wide Range Achievement Test, third edition) and psychopathologic behaviour (Child Behaviour Checklist) three months after an episode of severe malaria. Twenty-eight were randomised to sixteen sessions of computerised cognitive rehabilitation training lasting eight weeks and 33 to a non-treatment group. Post-intervention assessments were done a month after conclusion of the intervention. Analysis of covariance was used to detect any differences between the two groups after post-intervention assessment, adjusting for age, sex, weight for age z score, quality of the home environment, time between admission and post-intervention testing and pre-intervention score. The primary outcome was improvement in attention scores for the intervention group. This trial is registered with Current Controlled Trials, number ISRCTN53183087.</p> <p>Results</p> <p>Significant intervention effects were observed in the intervention group for learning mean score (SE), [93.89 (4.00) vs 106.38 (4.32), <it>P </it>= 0.04] but for working memory the intervention group performed poorly [27.42 (0.66) vs 25.34 (0.73), <it>P </it>= 0.04]. No effect was observed in the other cognitive outcomes or in any of the academic or behavioural measures.</p> <p>Conclusions</p> <p>In this pilot study, our computerised cognitive training program three months after severe malaria had an immediate effect on cognitive outcomes but did not affect academic skills or behaviour. Larger trials with follow-up after a few years are needed to investigate whether the observed benefits are sustained.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN53183087">ISRCTN53183087</a></p

    Paratuberculosis sero-status and milk production, SCC and calving interval in Irish dairy herds

    Get PDF
    The objective of this study was to investigate the impact of paratuberculosis sero-status on milk yield, fat, protein, somatic cell count and calving interval in Irish dairy herds. Serum from all animals over 12 months of age (n = 2,602) in 34 dairy herds was tested for antibodies to Mycobacterium avium subsp. paratuberculosis using an ELISA. Herds were categorised by sero-status into positive, non-negative and negative, where a positive herd contained two or more positive cows, a non-negative herd contained only one positive cow and a negative herd contained no positive cows. Data at animal, parity and herd-level were analysed by multiple regression using general linear models. Positive herds (mean herd size = 129 cows) and non-negative herds (81 cows) were larger than negative herds (72 cows) (P < 0.01). Negative herds had the highest economic breeding index (EBI), while positive herds had the highest estimated breeding value (EBV) for milk yield. There was no significant effect of paratuberculosis sero-status at animal, parity or herd-level on milk yield, milk fat or protein production, somatic cell count score (SCCS) or calving interval. Negative herds tended to have a lower SCCS than positive and nonnegative herds (P = 0.087). This study only examined the effects of paratuberculosis sero-status but did not examine the clinical effects of Johne's disease at the farm or dairy industry levels

    Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    Get PDF
    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands
    corecore